Summary:

The Free-Electron Laser (FEL) is a versatile and powerful light source with tunable wavelengths, enabling applications across fields such as atomic and molecular physics, biology, chemistry, particle physics, and astrophysics. John Madey, the inventor of the FEL, established this lab within the Department of Physics and Astronomy at the University of Hawaii at Mānoa. The lab houses a linear electron accelerator and an FEL oscillator, which produces infrared photons. These photons are used in an inverse Compton scattering configuration to generate hard X-ray photons.

Machine Specifications:

(Niknejadi, Pardis, et al. “Free-electron laser inverse-Compton interaction x-ray source.” Physical Review Accelerators and Beams 22.4 (2019): 040704.)

TABLE. Current design and experimental operating parameters for FELICIA. The flux and brilliance are calculated from the experimental values as a reference.

Symbols and parametersDesignExperiment
rf/electron pulses
ƒ rf frequency (GHz)2.8562.856
Imp macropulse current (mA)170143
τmp macropulse duration (μs)55
ƒmp macropulse frequency (Hz)1004
Qμp micropulse charge (pC)6050
τμp micropulse duration (ps)21-2
Ɛe electron bream energy (MeV)4042.2
ϵn normalized emittance (π-mm-mrad)825
Laser pulses
λ0 laser wavelength (μm)33.1
Ƥ1 laser power (MW)2.60.3
Interaction point
w0 laser beam waist (μm)3030
rms electron beam size (μm)3053 (42 x 64)
Ƒ storage cavity finesse2000
Ƥs stored optical power (GW)2.6
Scattered x-rays
Ɛγ x-ray energy (keV)1010.9
λγ x-ray wavelength (Å)1.21.1
Ƒγ total average x-ray flux (ph/s)2.1 x 10113.0 x 105
θ = 1/γ x-ray divergence angle (mrad)12.612.1
Bave average brilliancea7.6 x 1081.3 x 105
Bpeak peak brilliancea3.3 x 10143.7 x 109
  aphotons/smm2mrad2 0.1% BW.1